Robust ANCOVA, Curvature, and the Curse of Dimensionality

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The curse of dimensionality

In this text, some question related to higher dimensional geometrical spaces will be discussed. The goal is to give the reader a feeling for geometric distortions related to the use of such spaces (e.g. as search spaces).

متن کامل

Privacy and the Dimensionality Curse

Most privacy-transformation methods such as k-anonymity or randomization use some kind of transformation on the data for privacy-preservation purposes. In many cases, the data can be indirectly identified with the use of a combination of attributes. Such attributes may be available from public records and they may be used to link the sensitive records to the target of interest. Thus, the sensit...

متن کامل

Overcoming the Curse of Dimensionality ?

We study the behavior of pivot-based algorithms for similarity searching in metric spaces. We show that they are eeective tools for intrinsically high-dimensional spaces, and that their performance is basically dependent on the number of pivots used and the precision used to store the distances. In this paper we give a simple yet eeective recipe for practitioners seeking for a black-box method ...

متن کامل

Human Reading and the Curse of Dimensionality

Whereas optical character recognition (OCR) systems learn to classify single characters; people learn to classify long character strings in parallel, within a single fixation . This difference is surprising because high dimensionality is associated with poor classification learning. This paper suggests that the human reading system avoids these problems because the number of to-be-classified im...

متن کامل

Regression Efficacy and the Curse of Dimensionality‡

This paper gives a geometric representation of a class of non-parametric regression estimators that includes series expansions (Fourier, wavelet, Tchebyshev and others), kernels and other locally weighted regressions, splines, and artificial neural networks. For any estimator having this geometric representation, there is no curse of dimensionality — asymptotically, the error goes to 0 at the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Modern Applied Statistical Methods

سال: 2019

ISSN: 1538-9472

DOI: 10.22237/jmasm/1551906370